MeSat Mission: Exploring Martian Environment with THz Radiometer Payload and Optimal Trajectory

Author:

Rastinasab Vahid1,Hu Weidong1,Saghamanesh Mohammadreza2,Kerrouche Kamel Djamel Eddine3,Tahmasebi Mohammad Kazem4

Affiliation:

1. School of Electronics and Information, Beijing Institute of Technology, Beijing 100811, China

2. Department of Engineering, Faculty of Space Engineering, Imam Hossein University, Tehran 16987-15461, Iran

3. School of Automation Sciences and Electrical Engineering, Beihang University, Beijing 100191, China

4. School of Mechanical Engineering, University of Science and Technology, Tehran 16846-13114, Iran

Abstract

Space exploration presents vast prospects for scientific, industrial, and economic progress. This paper introduces the MeSat mission as a pioneering approach to Mars exploration. The MeSat aims to deepen our understanding of Martian conditions and resources by employing an optimized Earth-to-Mars trajectory, enabling a comprehensive study of the Martian atmosphere and surface. The mission comprises a cargo microsatellite hosting three 6U CubeSats and two 3U CubeSats, deployed into four separate Mars orbits to form a constellation. Each CubeSat carries distinct payloads: a THz radiometer for Martian water vapor atmospheric observation, a high-resolution surface camera, a high-tech spectrometer, and a Fourier transform spectrometer (FTS) for wind speed readings. This paper includes the majority of the key parameters; however, we focus our discussion more on two aspects of this pioneering mission: the first aspect contains the proposal of four distinct payloads for the study of Mars’ atmosphere and the second aspect proposes an optimal mission design algorithm that analyzes a fuel-efficient low-thrust trajectory from Earth to Mars. Regarding the payloads, the THz radiometer requires a specific design; hence, we explain this payload in more depth; the rest of the payloads, we suggest utilizing commercially available elements for the cost-effective manufacture of a whole system. For mission trajectory optimization, the study employs a dual-step hybrid optimization algorithm (PSO-homotopy) to analyze fuel-efficient low-thrust trajectories from Earth to Mars, incorporating the ephemeris dynamics model to account for gravitational perturbations in the entire Solar System. In practical mission design, crucial factors like hyperbolic excess velocity, diverse opportunities for Earth launch and Mars rendezvous, varied propulsion systems, and time of flight (TOF) play vital roles in trajectory optimization. In summary, for the MeSat mission, we propose a comprehensive Mars environmental mission design. We consider all aspects of the mission from trajectory design to engineering detail design, since we would like to inspire future Mars missions with a complete report.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3