Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review

Author:

Salas-Nuñez Luis F.1ORCID,Barrera-Ocampo Alvaro2ORCID,Caicedo Paola A.3,Cortes Natalie4ORCID,Osorio Edison H.4,Villegas-Torres Maria F.5,González Barrios Andres F.1ORCID

Affiliation:

1. Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia

2. Grupo Natura, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Departamento de Ciencias Farmacéuticas y Químicas, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, Colombia

3. Grupo Natura, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, Colombia

4. Grupo de Investigación en Química Bioorgánica y Sistemas Moleculares (QBOSMO), Faculty of Natural Sciences and Mathematics, Universidad de Ibagué, Ibagué 730002, Colombia

5. Centro de Investigaciones Microbiológicas (CIMIC), Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia

Abstract

Enzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.

Funder

Ministerio de Ciencia, Tecnología e Innovación

Assistant Professorship Funds from Universidad de los Andes

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3