Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses

Author:

Pan Xiaoxia1ORCID,Liu Huizhi1,Li Yiqian2,Guo Lirong2,Zhang Yunuo2,Zhu Youyong3,Yang Mingzhi2ORCID

Affiliation:

1. Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China

2. School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China

3. Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China

Abstract

In this study, the transcriptome profiles of tissue–cultured grapevine (Vitis vinifera L. × Vitis labrusca L.: Rose Honey) seedlings inoculated with fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2), were analyzed at three different time points (6 h, 6 d, and 15 d). A total of 4783 differentially expressed genes (DEGs) was found, of which 1853 (6 h), 3878 (6 d), and 4732 (15 d) were differentially expressed relative to those of the control in endophyte Epi R2-21 treatments, while a total of 5898 DEGs, of which 2726 (6 h), 4610 (6 d), and 3938 (15 d) were differentially expressed in endophyte Alt XHYN2 treatments. DEGs enriched in secondary metabolic pathways, plant–pathogen interaction, and hormone signalling were further analysed. The upregulated DEGs in the Epi R2-21 and Alt XHYN2 treatments, both enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG), were mainly involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, phenylalanine metabolism, and circadian rhythms–plant and plant–pathogen interactions, similar to the trend observed in our previous study conducted on the cultivar ‘Cabernet Sauvignon’ (Vitis vinifera L.). Taken together with the results obtained from the cultivar ‘Cabernet Sauvignon’, it was found that tissue-cultured seedlings of the cultivar ‘Rose Honey’ induced a stronger defence response to fungal endophyte infection than that of the cultivar ‘Cabernet Sauvignon’, and inoculation with the endophyte Alt XHYN2 triggered a stronger response than inoculation with the endophyte Epi R2-21. In addition, the protein–protein interaction (PPI) network revealed that the genes VIT_16s0100g00910, encoding CHS, and VIT_11s0065g00350, encoding CYP73A, were involved in secondary metabolism and thus mediated in the resistance mechanism of grapevine on both the cultivars. The results showed that inoculation with the endophytes Epi R2-21 and Alt XHYN2 had a great ability to induce defence responses and reprogram the gene expression profiles in different grapevine cultivars, which deepens our knowledge of the interaction between fungal endophytes and grapevine and gives hints for grape quality management in viticulture using candidate fungal endophytes.

Funder

National Natural Science Foundation of China

joint foundation of Yunnan Provincial Department of Science and Technology and Yunnan University

Yunnan provincial key S&T Special Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3