The meristem-associated endosymbiont Methylorubrum extorquens DSM13060 reprograms development and stress responses of pine seedlings

Author:

Koskimäki Janne J1,Pohjanen Johanna1,Kvist Jouni2,Fester Thomas3,Härtig Claus3,Podolich Olga4,Fluch Silvia5,Edesi Jaanika16,Häggman Hely1,Pirttilä Anna Maria1ORCID

Affiliation:

1. Ecology and Genetics Research Unit, University of Oulu, Paavo Havaksentie J1, FI-90014 Oulu, Finland

2. Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00014 Helsinki, Finland

3. Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany

4. Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150 03680 Kyiv, Ukraine

5. Weiden am See, Burgenland 7121, Austria

6. Production Systems, Tree Breeding, Natural Resources Institute Finland LUKE, FI-57200 Savonlinna, Finland

Abstract

Abstract Microbes living in plant tissues—endophytes—are mainly studied in crop plants where they typically colonize the root apoplast. Trees—a large carbon source with a high capacity for photosynthesis—provide a variety of niches for endophytic colonization. We have earlier identified a new type of plant–endophyte interaction in buds of adult Scots pine, where Methylorubrum species live inside the meristematic cells. The endosymbiont Methylorubrum extorquens DSM13060 significantly increases needle and root growth of pine seedlings without producing plant hormones, but by aggregating around host nuclei. Here, we studied gene expression and metabolites of the pine host induced by M. extorquens DSM13060 infection. Malic acid was produced by pine to potentially boost M. extorquens colonization and interaction. Based on gene expression, the endosymbiont activated the auxin- and ethylene (ET)-associated hormonal pathways through induction of CUL1 and HYL1, and suppressed salicylic and abscisic acid signaling of pine. Infection by the endosymbiont had an effect on pine meristem and leaf development through activation of GLP1-7 and ALE2, and suppressed flowering, root hair and lateral root formation by downregulation of AGL8, plantacyanin, GASA7, COW1 and RALFL34. Despite of systemic infection of pine seedlings by the endosymbiont, the pine genes CUL1, ETR2, ERF3, HYL, GLP1-7 and CYP71 were highly expressed in the shoot apical meristem, rarely in needles and not in stem or root tissues. Low expression of MERI5, CLH2, EULS3 and high quantities of ononitol suggest that endosymbiont promotes viability and protects pine seedlings against abiotic stress. Our results indicate that the endosymbiont positively affects host development and stress tolerance through mechanisms previously unknown for endophytic bacteria, manipulation of plant hormone signaling pathways, downregulation of senescence and cell death-associated genes and induction of ononitol biosynthesis.

Funder

Academy of Finland

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3