Affiliation:
1. The College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
2. College of Information Management, Nanjing Agricultural University, Nanjing 210095, China
3. Department of Computing and Software, McMaster University, Hamilton, ON L8S 4L8, Canada
Abstract
Forest fires are major forestry disasters that cause loss of forest resources, forest ecosystem safety, and personal injury. It is often difficult for current forest fire detection models to achieve high detection accuracy on both large and small targets at the same time. In addition, most of the existing forest fire detection models are single detection models, and using only a single model for fire detection in a complex forest environment has a high misclassification rate, and the accuracy rate needs to be improved. Aiming at the above problems, this paper designs two forest fire detection models (named WSB and WSS) and proposes an integrated learning-based forest fire detection model (named WSB_WSS), which also obtains high accuracy in the detection of forest fires with large and small targets. In order to help the model predict the location and size of forest fire targets more accurately, a new edge loss function, Wise-Faster Intersection over Union (WFIoU), is designed in this paper, which effectively improves the performance of the forest fire detection algorithm. The WSB model introduces the Simple-Attention-Module (SimAM) attention mechanism to make the image feature extraction more accurate and introduces the bi-directional connectivity and cross-layer feature fusion to enhance the information mobility and feature expression ability of the feature pyramid network. The WSS model introduces the Squeeze-and-Excitation Networks (SE) attention mechanism so that the model can pay more attention to the most informative forest fire features and suppress unimportant features, and proposes Spatial Pyramid Pooling-Fast Cross Stage Partial Networks (SPPFCSPC) to enable the network to extract features better and speed up the operation of the model. The experimental findings demonstrate that the WSB model outperforms other approaches in the context of identifying forest fires characterized by small-scale targets, achieving a commendable accuracy rate of 82.4%, while the WSS model obtains a higher accuracy of 92.8% in the identification of large target forest fires. Therefore, in this paper, a more efficient forest fire detection model, WSB_WSS, is proposed by integrating the two models through the method of Weighted Boxes Fusion (WBF), and the accuracy of detecting forest fires characterized by small-scale targets attains 83.3%, while for forest fires with larger dimensions, the accuracy reaches an impressive 93.5%. This outcome effectively leverages the strengths inherent in both models, consequently achieving the dual objective of high-precision detection for both small and large target forest fires concurrently.
Funder
Key Research a nd Development Plan of Jiangsu Province
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Reference31 articles.
1. Office of the National Greening Committee (2023). Bulletin of China’s land greening status in 2022. Land Green., 3, 6–11.
2. Forest fire prevention management legal regime between China and the United States;Chen;J. For. Res.,2015
3. Modelling the effects of distance on the probability of fire detection from lookouts;Rego;Int. J. Wildland Fire,2006
4. Hossain, F.M.A., Zhang, Y., and Yuan, C. (2019, January 29–31). A Survey on Forest Fire Monitoring Using Unmanned Aerial Vehicles. Proceedings of the 3rd International Symposium on Autonomous Systems (ISAS), Shanghai, China.
5. Gure, M., Ozel, M.E., Yildirim, H.H., and Ozdemir, M. (2009, January 11–13). Use of Satellite Images for Forest Fires in Area Determination and Monitoring. Proceedings of the 4th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献