Abstract
Climate change is expected to increase fire events and activity with multiple impacts on human lives. Large grids of forest and city monitoring devices can assist in incident detection, accelerating human intervention in extinguishing fires before they get out of control. Artificial Intelligence promises to automate the detection of fire-related incidents. This study enrols 53,585 fire/smoke and normal images and benchmarks seventeen state-of-the-art Convolutional Neural Networks for distinguishing between the two classes. The Xception network proves to be superior to the rest of the CNNs, obtaining very high accuracy. Grad-CAM++ and LIME algorithms improve the post hoc explainability of Xception and verify that it is learning features found in the critical locations of the image. Both methods agree on the suggested locations, strengthening the abovementioned outcome.
Subject
General Economics, Econometrics and Finance
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献