Attribution of the role of climate change in the forest fires in Sweden 2018

Author:

Krikken Folmer,Lehner FlavioORCID,Haustein KarstenORCID,Drobyshev IgorORCID,van Oldenborgh Geert JanORCID

Abstract

Abstract. In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying the Canadian Fire Weather Index (FWI) based on sub-daily data, both in reanalysis data sets (ERA-Interim, ERA5, the Japanese 55 year Reanalysis, JRA-55, and Modern-Era Retrospective analysis for Research and Applications version 2, MERRA-2) and three large-ensemble climate models (EC-Earth, weather@home, W@H, and Community Earth System Model, CESM) simulations. The FWI, based on reanalysis, correlates well with the observed burnt area in summer (r=0.6 to 0.8). We find that the maximum FWI in July 2018 had return times of ∼24 years (90 % CI, confidence interval, > 10 years) for southern and northern Sweden. Furthermore, we find a negative trend of the FWI for southern Sweden over the 1979 to 2017 time period in the reanalyses, yielding a non-significant reduced probability of such an event. However, the short observational record, large uncertainty between the reanalysis products and large natural variability of the FWI give a large confidence interval around this number that easily includes no change, so we cannot draw robust conclusions from reanalysis data. The three large-ensembles with climate models point to a roughly 1.1 (0.9 to 1.4) times increased probability (non-significant) for such events in the current climate relative to preindustrial climate. For a future climate (2 ∘C warming), we find a roughly 2 (1.5 to 3) times increased probability for such events relative to the preindustrial climate. The increased fire weather risk is mainly attributed to the increase in temperature. The other main factor, i.e. precipitation during summer months, is projected to increase for northern Sweden and decrease for southern Sweden. We, however, do not find a clear change in prolonged dry periods in summer months that could explain the increased fire weather risk in the climate models. In summary, we find a (non-significant) reduced probability of such events based on reanalyses, a small (non-significant) increased probability due to global warming up to now and a more robust (significant) increase in the risk for such events in the future based on the climate models.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3