Automatic Alignment Method of Underwater Charging Platform Based on Monocular Vision Recognition

Author:

Yu Aidi1,Wang Yujia1,Li Haoyuan1,Qiu Boyang1

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

To enhance the crypticity and operational efficiency of unmanned underwater vehicle (UUV) charging, we propose an automatic alignment method for an underwater charging platform based on monocular vision recognition. This method accurately identifies the UUV number and guides the charging stake to smoothly insert into the charging port of the UUV through target recognition. To decode the UUV’s identity information, even in challenging imaging conditions, an encryption encoding method containing redundant information and an ArUco code reconstruction method are proposed. To address the challenge of underwater target location determination, a target location determination method was proposed based on deep learning and the law of refraction. The method can determine the two-dimensional coordinates of the target location underwater using the UUV target spray position. To meet the real-time control requirements and the harsh underwater imaging environment, we proposed a target recognition algorithm to guide the charging platform towards the target direction. The practical underwater alignment experiments demonstrate the method’s strong real-time performance and its adaptability to underwater environments. The final alignment error is approximately 0.5548 mm, meeting the required alignment accuracy and ensuring successful alignment.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous control of shore robotic charging systems based on computer vision;Expert Systems with Applications;2024-03

2. A Low-Cost and High-Precision Underwater Integrated Navigation System;Journal of Marine Science and Engineering;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3