Prediction Models of Shielding Effectiveness of Carbon Fibre Reinforced Cement-Based Composites against Electromagnetic Interference

Author:

Narayanan Shilpa1,Zhang Yifan1,Aslani Farhad12ORCID

Affiliation:

1. Materials and Structures Innovation Group, School of Engineering, The University of Western Australia, Crawley, WA 6009, Australia

2. School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia

Abstract

With the rapid development of communication technology as well as a rapid rise in the usage of electronic devices, a growth of concerns over unintentional electromagnetic interference emitted by these devices has been witnessed. Pioneer researchers have deeply studied the relationship between the shielding effectiveness and a few mixed design parameters for cementitious composites incoporating carbon fibres by conducting physical experiments. This paper, therefore, aims to develop and propose a series of prediction models for the shielding effectiveness of cementitious composites involving carbon fibres using frequency and mixed design parameters, such as the water-to-cement ratio, fibre content, sand-to-cement ratio and aspect ratio of the fibres. A multi-variable non-linear regression model and a backpropagation neural network (BPNN) model were developed to meet the different accuracy requirements as well as the complexity requirements. The results showed that the regression model reached an R2 of 0.88 with a root mean squared error (RMSE) of 2.3 dB for the testing set while the BPNN model had an R2 of 0.96 with an RMSE of 2.64 dB. Both models exhibited a sufficient prediction accuracy, and the results also supported that both the regression and the BPNN model are reasonable for such estimation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3