Wind Speed Prediction Based on Error Compensation

Author:

Jiao Xuguo12ORCID,Zhang Daoyuan1,Wang Xin3ORCID,Tian Yanbing1,Liu Wenfeng4,Xin Liping1

Affiliation:

1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China

2. State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

3. Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China

4. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

Abstract

Wind speed prediction is very important in the field of wind power generation technology. It is helpful for increasing the quantity and quality of generated wind power from wind farms. By using univariate wind speed time series, this paper proposes a hybrid wind speed prediction model based on Autoregressive Moving Average-Support Vector Regression (ARMA-SVR) and error compensation. First, to explore the balance between the computation cost and the sufficiency of the input features, the characteristics of ARMA are employed to determine the number of historical wind speeds for the prediction model. According to the selected number of input features, the original data are divided into multiple groups that can be used to train the SVR-based wind speed prediction model. Furthermore, in order to compensate for the time lag introduced by the frequent and sharp fluctuations in natural wind speed, a novel Extreme Learning Machine (ELM)-based error correction technique is developed to decrease the deviations between the predicted wind speed and its real values. By this means, more accurate wind speed prediction results can be obtained. Finally, verification studies are conducted by using real data collected from actual wind farms. Comparison results demonstrate that the proposed method can achieve better prediction results than traditional approaches.

Funder

Shandong Provincial Nature Science Foundation of China

National Natural Science Foundation of China

“20 New Universities” Project of Jinan City

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3