Abstract
Root and butt-rot (RBR) has a significant impact on both the material and economic outcome of timber harvesting, and therewith on the individual forest owner and collectively on the forest and wood processing industries. An accurate recording of the presence of RBR during timber harvesting would enable a mapping of the location and extent of the problem, providing a basis for evaluating spread in a climate anticipated to enhance pathogenic growth in the future. Therefore, a system to automatically identify and detect the presence of RBR would constitute an important contribution to addressing the problem without increasing workload complexity for the machine operator. In this study, we developed and evaluated an approach based on RGB images to automatically detect tree stumps and classify them as to the absence or presence of rot. Furthermore, since knowledge of the extent of RBR is valuable in categorizing logs, we also classify stumps into three classes of infestation; rot = 0%, 0% < rot < 50% and rot ≥ 50%. In this work we used deep-learning approaches and conventional machine-learning algorithms for detection and classification tasks. The results showed that tree stumps were detected with precision rate of 95% and recall of 80%. Using only the correct output (TP) of the stump detector, stumps without and with RBR were correctly classified with accuracy of 83.5% and 77.5%, respectively. Classifying rot into three classes resulted in 79.4%, 72.4%, and 74.1% accuracy for stumps with rot = 0%, 0% < rot < 50%, and rot ≥ 50%, respectively. With some modifications, the developed algorithm could be used either during the harvesting operation to detect RBR regions on the tree stumps or as an RBR detector for post-harvest assessment of tree stumps and logs.
Funder
Research Council of Norway
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献