Tree detection and diameter estimation based on deep learning

Author:

Grondin Vincent1,Fortin Jean-Michel1,Pomerleau François1,Giguère Philippe1

Affiliation:

1. Département d'informatique et de génie logiciel, Université Laval , 1045 Av. de la Médecine, Québec, QC, G1V 0A6, Canada

Abstract

Abstract Tree perception is an essential building block toward autonomous forestry operations. Current developments generally consider input data from lidar sensors to solve forest navigation, tree detection and diameter estimation problems, whereas cameras paired with deep learning algorithms usually address species classification or forest anomaly detection. In either of these cases, data unavailability and forest diversity restrain deep learning developments for autonomous systems. Therefore, we propose two densely annotated image datasets—43 k synthetic, 100 real—for bounding box, segmentation mask and keypoint detections to assess the potential of vision-based methods. Deep neural network models trained on our datasets achieve a precision of 90.4 % for tree detection, 87.2 % for tree segmentation and centimeter accurate keypoint estimations. We measure our models’ generalizability when testing it on other forest datasets, and their scalability with different dataset sizes and architectural improvements. Overall, the experimental results offer promising avenues toward autonomous tree felling operations and other applied forestry problems. The datasets and pre-trained models in this article are publicly available on GitHub (https://github.com/norlab-ulaval/PercepTreeV1).

Funder

FORAC Research Consortium

Publisher

Oxford University Press (OUP)

Subject

Forestry

Reference46 articles.

1. Pointly-supervised instance segmentation;Bowen,2022

2. Geometric deep learning: going beyond euclidean data;Bronstein;IEEE Signal Process. Mag.,2017

3. COCO Annotator;Brooks,2019

4. Virtual kitti 2;Cabon,2020

5. Cascade R-CNN: high quality object detection and instance segmentation;Cai;IEEE Trans. Pattern Anal. Mach. Intell.,2019

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for measuring tree diameters based on artificial intelligence technologies;Известия СПбЛТА;2024-09-01

2. DSAIL-TreeVision: A software tool for extracting tree biophysical parameters from stereoscopic images;SoftwareX;2024-05

3. Estimation of log-gripping position using instance segmentation for autonomous log loading;International Journal of Forest Engineering;2024-04-09

4. Putree: A Photorealistic Large-Scale Virtual Benchmark for Forest Training;2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW);2024-03-16

5. M2fNet: Multi-Modal Forest Monitoring Network on Large-Scale Virtual Dataset;2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW);2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3