Statistics to Detect Low-Intensity Anomalies in PV Systems

Author:

Vergura SilvanoORCID,Carpentieri Mario

Abstract

The aim of this paper is the monitoring of the energy performance of Photovoltaic (PV) plants in order to detect the presence of low-intensity anomalies, before they become failures or faults. The approach is based on several statistical tools, which are applied iteratively as the data are acquired. At every loop, new data are added to the previous ones, and a proposed procedure is applied to the new dataset, therefore the analysis is carried out on cumulative data. In this way, it is possible to track some specific parameters and to monitor that identical arrays in the same operating conditions produce the same energy. The procedure is based on parametric (ANOVA) and non-parametric tests, and results effective in locating anomalies. Three cumulative case studies, based on a real operating PV plant, are analyzed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3