The Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP) Method for Solving Wireless Sensor Networks Optimization Problems in Smart Grid Applications

Author:

Shehadeh Hisham A.ORCID,Ahmedy IsmailORCID,Ramli Roziana, ,

Abstract

Prior studies in Wireless Sensor Network (WSN) optimization mostly concentrate on maximizing network coverage and minimizing network energy consumption. However, there are other factors that could affect the WSN Quality of Service (QoS). In this paper, four objective functions that affect WSN QoS, namely end-to-end delay, end-to-end latency, network throughput and energy efficiency are studied. Optimal value of packet payload size that is able to minimize the end-to-end delay and end-to-end latency, while also maximizing the network throughput and energy efficiency is sought. To do this, a smart grid application case study together with a WSN QoS model is used to find the optimal value of the packet payload size. Our proposed method, named Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP), along with other three state-of-the-art multi-objective optimization algorithms known as OMOPSO, NSGA-II and SPEA2, are utilized in this study. Different packet payload sizes are supplied to the algorithms and their optimal value is derived. From the experiments, the knee point and the intersection point of all the obtained Pareto fronts for all the algorithms show that the optimal packet payload size that manages the trade-offs between the four objective functions is equal to 45 bytes. The results also show that the performance of our proposed MOSFP method is highly competitive and found to have the best average value compared to the other three algorithms. Furthermore, the overall performance of MOSFP on four objective functions outperformed OMOPSO, NSGA-II and SPEA2 by 3%, 6% and 51%, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3