Hybrid Newton–Sperm Swarm Optimization Algorithm for Nonlinear Systems

Author:

Said Solaiman Obadah1ORCID,Sihwail Rami2ORCID,Shehadeh Hisham3ORCID,Hashim Ishak14ORCID,Alieyan Kamal2ORCID

Affiliation:

1. Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

2. Department of Cyber Security, Faculty of Computer Science & Informatics, Amman Arab University, Amman 11953, Jordan

3. Department of Computer Information System, Faculty of Computer Science & Informatics, Amman Arab University, Amman 11953, Jordan

4. Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates

Abstract

Several problems have been solved by nonlinear equation systems (NESs), including real-life issues in chemistry and neurophysiology. However, the accuracy of solutions is highly dependent on the efficiency of the algorithm used. In this paper, a Modified Sperm Swarm Optimization Algorithm called MSSO is introduced to solve NESs. MSSO combines Newton’s second-order iterative method with the Sperm Swarm Optimization Algorithm (SSO). Through this combination, MSSO’s search mechanism is improved, its convergence rate is accelerated, local optima are avoided, and more accurate solutions are provided. The method overcomes several drawbacks of Newton’s method, such as the initial points’ selection, falling into the trap of local optima, and divergence. In this study, MSSO was evaluated using eight NES benchmarks that are commonly used in the literature, three of which are from real-life applications. Furthermore, MSSO was compared with several well-known optimization algorithms, including the original SSO, Harris Hawk Optimization (HHO), Butterfly Optimization Algorithm (BOA), Ant Lion Optimizer (ALO), Particle Swarm Optimization (PSO), and Equilibrium Optimization (EO). According to the results, MSSO outperformed the compared algorithms across all selected benchmark systems in four aspects: stability, fitness values, best solutions, and convergence speed.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference57 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3