A Novel Color Visual Cryptography Approach Based on Harris Hawks Optimization Algorithm

Author:

Ibrahim Dyala1,Sihwail Rami1ORCID,Arrifin Khairul Akram Zainol2ORCID,Abuthawabeh Ala3,Mizher Manar1ORCID

Affiliation:

1. Department of Cyber Security, College of Computer Science and Informatics, Amman Arab University, Amman 11953, Jordan

2. Department of Cyber Security, Faculty of Information Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

3. Department of Software Engineering, College of Computer Science and Informatics, Amman Arab University, Amman 11953, Jordan

Abstract

Hundreds of millions of people worldwide use computing devices and services, including smartphones, laptops, and messaging apps. Visual cryptography (VC) is one of the most secure encryption methods for image encryption in many applications, such as voting security, online transaction security, and privacy protection. An essential step in VC is encrypting secret images into multiple digital shares to hide them with the intention of successfully reverting them to their original form. Hence, a single share cannot reveal information about the secret image. Issues including pixel enlargement, high processing costs, and low decryption quality influence the current state of VC. We address these issues by introducing a novel technique based on (2, 2) secret sharing and the algorithm of Harris hawks optimization (HHO) for color photos. For the encryption process, the appropriate color levels are determined using the HHO algorithm. Consequently, images are decrypted with improved quality and a small impact on the overall processing complexity. The suggested scheme is also non-expandable due to the equal size of the initial secret image and the shared images. This results in lower memory requirements and improved image quality. The approach is applied to a set of well-known benchmark images. Moreover, a set of standard metrics is used to assess the robustness of the proposed scheme, including its capability in defending against cryptanalytic attacks, a correlation, a histogram, and the quality of encryption. According to the findings, the proposed solution provides better reconstructed image quality, time-efficient encryption, and nearly optimal statistical properties compared to previous approaches.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3