Analysis of the Surface Quality and Temperature in Grinding of Acrylic-Based Resin

Author:

Haider Syed Mustafa1ORCID,Hussain Abbas2ORCID,Abbas Muntazir2ORCID,Khan Shaheryar Atta1ORCID,Sarfraz Shoaib3ORCID

Affiliation:

1. Department of Industrial and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2. Department of Engineering Sciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

3. Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK

Abstract

Polymeric resins are becoming increasingly popular in medical and engineering applications due to their properties, such as their low weight, high strength, corrosion resistance, non-allergenicity, and extended service life. The grinding process is used to convert these materials into desired products, offering high accuracy and surface quality. However, grinding generates significant heat, which can potentially degrade the material. This study investigates the grinding of acrylic-based resins, specifically focusing on the interplay between the grind zone temperature and surface finish. The low glass transition temperature (57 °C) of the acrylic necessitates the precise control of the grinding parameters (spindle speed, feed rate, depth of cut, and grinding wheel grain size), to maintain a low temperature and achieve high-quality machining. Thermal imaging and thermocouples were employed to measure the grind zone temperature under various grinding conditions. This study investigates the influence of four parameters: spindle speed, feed rate, depth of cut, and grinding wheel grain size. The best surface finish (Ra: 2.5 µm) was obtained by using a finer-grained (80/Ø 0.18 mm) grinding wheel, combined with slightly adjusted parameters (spindle speed: 11.57 m/s, feed rate: 0.406 mm/rev, depth of cut: 1.00 mm), albeit with a slightly higher grind zone temperature (~54 °C). This study highlighted the importance of balancing the grind zone temperature and surface finish for the optimal grinding of acrylic-based resins. Further, this research finds that by carefully controlling the grinding parameters, it is possible to achieve both a high surface quality and prevent material degradation. The research findings could be highly valuable for optimizing the grinding process for various medical and engineering applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3