Lagrangian Cloud Tracking and the Precipitation-Column Humidity Relationship

Author:

Igel MatthewORCID

Abstract

The tropical, oceanic mean relationship between column relative humidity and precipitation is highly non-linear. Mean precipitation remains weak until it rapidly picks up and grows at high column humidity. To investigate the origin of this relationship, a Lagrangian cloud tracking code, RAMStracks, is developed, which can follow the evolution of clouds. RAMStracks can record the morphological properties of convective clouds, the meteorological environment of clouds, and their effects. RAMStracks is applied to a large-domain radiative convective equilibrium simulation, which produces a complex population of convective clouds. RAMStracks records the lifecycle of 501 clouds through growth, splits, mergers, and decay. The mean evolution of all these clouds is examined. It is shown that the column humidity evolves non-monotonically, but that lower-level and upper-level contributions to total moisture do evolve monotonically. The precipitation efficiency of tropical storms tends to increase with cloud age. This is confirmed using a prototype testing method. The same method reveals that different tracked clouds with similar initial conditions evolve in very different ways. This makes drawing general conclusions from individual storms difficult. Finally, the causality of the precipitation-column humidity relationship is examined. A Granger Causality test, as well as regressions, suggest that moisture and precipitation are causally linked, but that the direction of causality is ambiguous. Much of this link appears to come from the lower-level moisture’s contribution to column humidity.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3