Diurnally Modulated Cumulus Moistening in the Preonset Stage of the Madden–Julian Oscillation during DYNAMO*

Author:

Ruppert James H.1,Johnson Richard H.1

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Atmospheric soundings, radar, and air–sea flux measurements collected during Dynamics of the Madden–Julian Oscillation (DYNAMO) are employed to study MJO convective onset (i.e., the transition from shallow to deep convection) in the tropical Indian Ocean. The findings indicate that moistening of the low–midtroposphere during the preonset stage of the MJO is achieved by simultaneous changes in the convective cloud population and large-scale circulation. Namely, cumuliform clouds deepen and grow in areal coverage as the drying by large-scale subsidence and horizontal (westerly) advection wane. The reduction of large-scale subsidence is tied to the reduction of column radiative cooling during the preonset stage, which ultimately links back to the evolving cloud population. While net column moistening in the preonset stage is tied to large-scale circulation changes, a new finding of this study is the high degree to which the locally driven diurnal cycle invigorates convective clouds and cumulus moistening each day. This diurnal cycle is manifest in a daytime growth of cumulus clouds (in both depth and areal coverage) in response to oceanic diurnal warm layers, which drive a daytime increase of the air–sea fluxes of heat and moisture. This diurnally modulated convective cloud field exhibits prominent mesoscale organization in the form of open cells and horizontal convective rolls. It is hypothesized that the diurnal cycle and mesoscale cloud organization characteristic of the preonset stage of the MJO represent two manners in which local processes promote more vigorous daily-mean column moistening than would otherwise occur.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3