Moving Object Detection Based on Fusion of Depth Information and RGB Features

Author:

Bi Xin,Yang ShichaoORCID,Tong Panpan

Abstract

The detection of moving objects is one of the key problems in the field of computer vision. It is very important to detect moving objects accurately and rapidly for automatic driving. In this paper, we propose an improved moving object detection method to overcome the disadvantages of the RGB information-only-based method in detecting moving objects that are susceptible to shadow interference and illumination changes by adding depth information. Firstly, a convolutional neural network (CNN) based on the color edge-guided super-resolution reconstruction of depth maps is proposed to perform super-resolution reconstruction of low-resolution depth images obtained by depth cameras. Secondly, the RGB-D moving object detection algorithm is based on fusing the depth information of the same scene with RGB features for detection. Finally, in order to evaluate the effectiveness of the algorithm proposed in this paper, the Middlebury 2005 dataset and the SBM-RGBD dataset are successively used for testing. The experimental results show that our super-resolution reconstruction algorithm achieves the best results among the six commonly used algorithms, and our moving object detection algorithm improves the detection accuracy by up to 18.2%, 9.87% and 40.2% in three scenes, respectively, compared with the original algorithm, and it achieves the best results compared with the other three recent RGB-D-based methods. The algorithm proposed in this paper can better overcome the interference caused by shadow or illumination changes and detect moving objects more accurately.

Funder

the National Key R&D Program of China under Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object pose and surface material recognition using a single-time-of-flight camera;Advanced Photonics Nexus;2024-06-04

2. Multi-scale perceptual YOLO for automatic detection of clue cells and trichomonas in fluorescence microscopic images;Computers in Biology and Medicine;2024-06

3. Research on detecting moving targets with an improved Kalman filter algorithm;KSII Transactions on Internet and Information Systems;2023-09-30

4. Moving Object Detection with Photometric Monocular SLAM on a Moving Ego-Platform;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

5. Abnormal operation recognition based on a spatiotemporal residual network;Multimedia Tools and Applications;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3