Evaluating the Efficacy of Intelligent Methods for Maximum Power Point Tracking in Wind Energy Harvesting Systems

Author:

Umar Dallatu Abbas12ORCID,Alkawsi Gamal1ORCID,Jailani Nur Liyana Mohd1ORCID,Alomari Mohammad Ahmed3ORCID,Baashar Yahia4ORCID,Alkahtani Ammar Ahmed1ORCID,Capretz Luiz Fernando5ORCID,Tiong Sieh Kiong1

Affiliation:

1. Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia

2. Department of Physics, Kaduna State University, Tafawa Balewa Way, PMB 2339, Kaduna 800283, Nigeria

3. Institute of Informatics and Computing in Energy, Department of Informatics, College of Computing and Informatics, Universiti Tenaga Nasional, Kajang 43000, Malaysia

4. Faculty of Computing and Informatics, Universiti Malaysia Sabah (UMS), Labuan 87000, Malaysia

5. Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada

Abstract

As wind energy is widely available, an increasing number of individuals, especially in off-grid rural areas, are adopting it as a dependable and sustainable energy source. The energy of the wind is harvested through a device known as a wind energy harvesting system (WEHS). These systems convert the kinetic energy of wind into electrical energy using wind turbines (WT) and electrical generators. However, the output power of a wind turbine is affected by various factors, such as wind speed, wind direction, and generator design. In order to optimize the performance of a WEHS, it is important to track the maximum power point (MPP) of the system. Various methods of tracking the MPP of the WEHS have been proposed by several research articles, which include traditional techniques such as direct power control (DPC) and indirect power control (IPC). These traditional methods in the standalone form are characterized by some drawbacks which render the method ineffective. The hybrid techniques comprising two different maximum power point tracking (MPPT) algorithms were further proposed to eliminate the shortages. Furtherly, Artificial Intelligence (AI)-based MPPT algorithms were proposed for the WEHS as either standalone or integrated with the traditional MPPT methods. Therefore, this research focused on the review of the AI-based MPPT and their performances as applied to WEHS. Traditional MPPT methods that are studied in the previous articles were discussed briefly. In addition, AI-based MPPT and different hybrid methods were also discussed in detail. Our study highlights the effectiveness of AI-based MPPT techniques in WEHS using an artificial neural network (ANN), fuzzy logic controller (FLC), and particle swarm optimization (PSO). These techniques were applied either as standalone methods or in various hybrid combinations, resulting in a significant increase in the system’s power extraction performance. Our findings suggest that utilizing AI-based MPPT techniques can improve the efficiency and overall performance of WEHS, providing a promising solution for enhancing renewable energy systems.

Funder

Universiti Tenaga Nasional

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3