Software Design and Experimental Evaluation of a Reduced AES for IoT Applications

Author:

Qasaimeh MalikORCID,Al-Qassas Raad S.ORCID,Ababneh Mohammad

Abstract

IoT devices include RFID tags, microprocessors, sensors, readers, and actuators. Their main characteristics are their limited resources and computing capabilities, which pose critical challenges to the reliability and security of their applications. Encryption is necessary for security when using these limited-resource devices, but conventional cryptographic algorithms are too heavyweight and resource-demanding to run on IoT infrastructures. This paper presents a lightweight version of AES (called LAES), which provides competitive results in terms of randomness levels and processing time, operating on GF(24). Detailed mathematical operations and proofs are presented concerning LAES rounds design fundamentals. The proposed LAES algorithm is evaluated based on its randomness, performance, and power consumption; it is then compared to other cryptographic algorithm variants, namely Present, Clefia, and AES. The design of the randomness and performance analysis is based on six measures developed with the help of the NIST test statistical suite of cryptographic applications. The performance and power consumption of LAES on a low-power, 8-bit microcontroller unit were evaluated using an Arduino Uno board. LAES was found to have competitive randomness levels, processing times, and power consumption compared to Present, Clefia, and AES.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference52 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Encryption Standard-128 bit Design Flow for ZYNQ-7 ZC702 Evaluation Board;2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS);2023-02-02

2. Conversion of Clefia Algorithm to Decrease Memory Restrictions Encountered on IoT by Applying CMA Method;2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2022-08-04

3. FPGA Implementation of High-Performance s-box Model and Bit-level Masking for AES Cryptosystem;International Journal of Electrical and Electronics Research;2022-06-30

4. An efficient multilevel security architecture for blockchain-based IoT networks using principles of cellular automata;PeerJ Computer Science;2022-05-25

5. Data Fusion and the Impact of Group Mobility on Load Distribution on MRHOF and OF0;Cybernetics and Information Technologies;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3