An efficient multilevel security architecture for blockchain-based IoT networks using principles of cellular automata

Author:

Ali Fasila1,Mathew Sheena1

Affiliation:

1. School of Engineering, Cochin University of Science and Technology, Ernakulam, Kerala, India

Abstract

The tremendous increase in the use of Internet of Things (IoT) has made an impact worldwide by changing the mode of day-to-day life. Like any other application, IoT based networks also have to be protected since the data produced consist of sensitive information. Existing algorithms for providing security in such networks do not consider all the security objectives. Starting from the sensing of data from IoT environment, the data have to be protected from several types of attacks. Also, the authentication of involved entities, integrity of data, access control and confidentiality are to be achieved. This work proposes a novel security architecture for IoT based distributed applications. The architecture uses the best known lightweight cipher ChaCha20. Principles of cellular automata are applied for random number generation to attain more security and randomness. Double encryption ensures multilevel protection of data during the data uploading and storing phases. Providing encryption based on dynamic session keys guarantees the security of the method. It also ensures secure data sharing, mutual authentication between communicating entities, fast execution, user authentication and message integrity. The IoT device connected to a gateway node has to complete registration phase successfully. Subsequently, each time a data transfer between the device and gateway node takes place, mutual authentication phase is executed. Blockchain network used at the edge level ensures authentication of participating nodes and hence, unintended modification of data is prevented. The proposed architecture proves to be efficient in terms of throughput, execution time and resistance to various security attacks.

Publisher

PeerJ

Subject

General Computer Science

Reference76 articles.

1. Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks;Amin;Computer Networks,2016

2. Leveraging blockchain based protocols in IoT systems;Angelos,2021

3. Pros and cons of hyperledger fabric for blockchain networks;Aran,2020

4. A Case Study for Blockchain in Healthcare: “MedRec” prototype for electronic health records and medical research data;Ariel,2016

5. Rotational analysis of ChaCha permutation;Barbero;Advances in Mathematics of Communication,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3