Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR

Author:

Chen ChenORCID,Gao Song,Chen Liang,Bao Xiaoyi

Abstract

The distributed high temperature measurement of an optical fiber subjected to electric arc discharges based on optical frequency-domain reflectometry is experimentally demonstrated. The distributed temperature profile is attained in an open glow regime of a few milliamps with maximum detectable temperature up to 2100 ± 20 °C. The discharge arc-induced softened length of the fiber and mechanical stress are measured and statistically analyzed in terms of the correlation of the Rayleigh spectra. The large wavelength scanning range of OFDR enables much higher accuracy for the delay time measurement with a minimum measured delay of 40 fs. The delay shift over the entire heating range for a single discharge duration is statistically calculated by using a temporal correlation method. The reliability of the thermal sensitivity coefficient as 10 pm/°C for telecom single mode fiber (SMF, @1550 nm) is quantitatively analyzed and evaluated by the correlation coefficient. Lastly, a spectral mapping method is employed in spectrum monitoring for discharge dynamic impact on the optical path length (OPL) and local Rayleigh scatter.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3