Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model

Author:

Xiao FengjinORCID,Liu QiufengORCID,Xu Yuqing

Abstract

The net primary productivity (NPP) of vegetation is an essential factor of ecosystem functions, including the biological geochemical carbon cycle, which is often impacted by climate change and human activities. It plays a significant role in comprehending the nature of carbon balance in an ecosystem and demonstrates the global and regional carbon cycle dynamics. The present study used an upgraded CASA model to calculate the NPP in the Yellow River Basin (YRB), China. The model’s simulation ability was improved by changing the model parameters. Further, the CASA model was validated by comparing with MODIS-NPP and in situ observed NPP, wherein the accuracy of the CASA model estimation was found satisfactory to estimate NPP changes in the study area. The simulated results of the improved CASA model showed that the mean annual NPP value of vegetation in the YRB was 283.4 gC m–2 a–1 from 2001 to 2020, with a declining trend in spatial distribution from south to north. In contrast, the NPP appeared as an increasing trend in the YRB temporally from 212 gC m–2 a–1 in 2001 to 342 gC m–2 a–1 in 2020, with a mean annual growth rate of 4.6 gC m–2 a–1. The total NPP in the YRB increased by 40,088.3 GgC between 2001 and 2020, from 226.06 TgC to 266.15 TgC. This rise can be attributed to the increase in forests. The average grassland area has reduced by 4651 km2 during the last two decades, significantly impacting the total NPP of grasslands. Although the increase in NPP in wetlands was minimal, accounting for 815.53 GgC, the highest change percentage of 79.78%, could be observed among the six vegetation types due to the anthropogenic influences and climate change. The conditions favorable for vegetation growth and a sustained environment were enhanced by the increased precipitation and temperature and the reinforced ecological protection by the government.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference58 articles.

1. Aspects of productivity and nutrient cycling in an 8-year-old Eucalyptus plantation in a moist plain area adjacent to central Himalaya, India

2. dynamics, storage and flux of nutrients in an aged eucalypt plantation in Central Himalaya;Bargali;Oecologia Mont.,1995

3. Fundamentals of Ecology;Odum,1971

4. Primary Productivity of Biosphere (Editors’ Preface);Liet,1975

5. Comparison of four light use efficiency models for estimating terrestrial gross primary production

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3