Incorporating Heterogeneous Features into the Random Subspace Method for Bearing Fault Diagnosis

Author:

Chu Yan1,Ali Syed Muhammad23,Lu Mingfeng3,Zhang Yanan3

Affiliation:

1. School of Finance, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China

2. Department of Engineering Management, National University of Sciences and Technology, Islamabad 44000, Pakistan

3. School of Management, Hefei University of Technology, Hefei 230009, China

Abstract

In bearing fault diagnosis, machine learning methods have been proven effective on the basis of the heterogeneous features extracted from multiple domains, including deep representation features. However, comparatively little research has been performed on fusing these multi-domain heterogeneous features while dealing with the interrelation and redundant problems to precisely discover the bearing faults. Thus, in the current study, a novel diagnostic method, namely the method of incorporating heterogeneous representative features into the random subspace, or IHF-RS, is proposed for accurate bearing fault diagnosis. Primarily, via signal processing methods, statistical features are extracted, and via the deep stack autoencoder (DSAE), deep representation features are acquired. Next, considering the different levels of predictive power of features, a modified lasso method incorporating the random subspace method is introduced to measure the features and produce better base classifiers. Finally, the majority voting strategy is applied to aggregate the outputs of these various base classifiers to enhance the diagnostic performance of the bearing fault. For the proposed method’s validity, two bearing datasets provided by the Case Western Reserve University Bearing Data Center and Paderborn University were utilized for the experiments. The results of the experiment revealed that in bearing fault diagnosis, the proposed method of IHF-RS can be successfully utilized.

Funder

the East China Branch of State Grid Corporation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3