Affiliation:
1. Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050001, China
2. Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050011, China
3. Hebei Technology Innovation Center for Geographic Information Application, Shijiazhuang 050011, China
Abstract
Clarifying the interrelationship between climate and land use/land cover (LULC) changes on water yield in mountainous areas is very urgent due to the dramatic decrease in the water availability of mountainous areas. In this study, the InVEST model was used to calculate the water yield of the mountainous area in Beijing–Tianjin–Hebei region (BTH) from 1980 to 2020, and six scenarios were designed to identify the contribution rates of climate and LULC change on the water yield. The results showed that, in 1980–2020, the water yield in the mountainous area of BTH was the largest in 1990, at 377.95 mm and the smallest in 1980, at 150.49 mm. After 2000, the interannual water yield showed a slightly increasing trend, which was significantly lower than the water yield in 1990, the values ranging from 217.01 mm to 324.65 mm. During the study period, the spatial distribution of the water yield was similar over the years, with high values in the south-central Taihang Mountain (THM) and the northeastern Yanshan Mountain (YSM). The THM was the main water yield area of the mountainous area in BTH. The annual water yield of farmland was the highest, followed by forest land and grassland, while the proportion of volumetric water yield was the largest in forest land with an increasing trend from 1980 to 2020 and the grassland showed a decreasing trend, while that of farmland increased first from 1980 to 2000 and decreased from 2000 to 2020. Climate is the key factor controlling the water yield of the mountainous area in BTH from 1980–2000, 2000 to 2020, and 1980 to 2020. In the period of 2000–2020, the effect of LULC on the water yield is negative, while the effect is positive in 1980–2000 and 1980–2020. The contribution rate of climate to the water yield increases in the THM, Bashang region (BSR) and YSM from the period 1980–2000 to 2000–2020, while that of LULC in those three regions changes from a positive impact in 1980–2000 to a negative impact in 2000–2020, and the contribution rate is also greatly reduced. In the long term, land revegetation will gradually benefit the water yield in the mountainous areas of BTH, including the THM, BSR, and YSM. These results can provide an important scientific and technological reference for the ecological management and protection of water source sites, as well as the planning and utilization of water resources in mountainous areas of BTH.
Funder
Natural Science Foundation of Hebei Province
Key Research and Development Plan Project of Hebei Province
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献