Research of Seismogenic Structures of the 2016 and 2022 Menyuan Earthquakes, in the Northeastern Tibetan Plateau

Author:

Wang Junyi12,Ding Lin12,He Jiankun12,Cai Fulong12,Wang Chao12ORCID,Zhang Zongkun12

Affiliation:

1. State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

On 8 January 2022, a Moment Magnitude (Mw) 6.7 earthquake occurred in Menyuan, China. The epicenter was located in the western segment of the Lenglongling fault of the Qilian-Haiyuan fault zone. In this area, the Mw 5.9 Menyuan earthquake on 26 August 1986 and the Mw 5.9 Menyuan earthquake on 21 January 2016 successively occurred. The seismogenic structures of the 1986 and 2016 earthquakes are on the Northern Lenglongling fault, which is a few kilometers away from the Lenglongling fault. After the 2022 Menyuan earthquake, we collected GF-7 and Sentinel-1 satellite images to measure the surface deformation of the earthquake sequence. Based on the elastic dislocation theory, the fault model and fault slip distribution of the 2016 and 2022 Mengyuan earthquakes were inverted using coseismic surface displacements. The results show that the 2016 event is a reverse event, with the maximum coseismic surface displacement on LOS reaching 8 cm. The strike, dip, and rake of the earthquake rupture were 139°, 41°, and 78°, with the maximum slip reaching 0.6 m at a depth of 8 km. The surface rupture of the 2022 Mw 6.7 earthquake ran in the WNW–ESE direction with a maximum displacement on LOS of 72 cm. The main seismogenic fault of the 2022 event was the western segment of the Lenglongling fault. The strike, dip, and rake of the rupture were 112°, 85°, and 3°, with the maximum slip reaching 4 m at a depth of 4 km. The Coulomb failure stress change shows that the earthquake sequence generated a considerable positive Coulomb failure stress of more than 2 bar. These observations suggest that the earthquake sequence around Menyuan is mainly governed by the activities of the Lenglongling fault around the northeastern Tibetan Plateau. In addition, their sequential occurrences could be related to earthquake-triggering mechanisms due to stress interaction on different deforming faults. Thus, the Lenglongling fault has received a great amount of attention regarding its potential earthquake hazards.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China BSCTPES project

Chinese Academy of Sciences, Strategic Priority Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference84 articles.

1. Surface rupture characteristics of the Menyuan Ms6.9 Earthquake on January 8, 2022, Qinghai Province;Liang;Seismol. Geol.,2022

2. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai Ms6.4 earthquake;Hu;Chin. J. Geophys.,2016

3. Earthquake source mechanisms of Menyuan earthquake (Ms = 6.4, on Aug.26,1986) and its strong aftershocks;Xu;Chin. Earthq. Eng. J.,1986

4. Examination of the repeatability of two Ms6.4 Menyuan earthquakes in Qilian-Haiyuan fault zone (NE Tibetan Plateau) based on source parameters;He;Phys. Earth Planet. Inter.,2019

5. Research of seismogenic structure of the Menyuan Ms6.4 earthquake on January 21, 2016 in Lenglongling area of NE Tibetan plateau;Jiang;Seismol. Geol.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3