Dynamic Rupture and Strong Ground-Motion Simulations of the 8 January 2022 Ms 6.9 Qinghai Menyuan Earthquake

Author:

Ouyang Fang1ORCID,Shao Zhigang1,Zhang Wei2ORCID,Zhang Zhenguo2ORCID

Affiliation:

1. 1Institute of Earthquake Forecasting, China Earthquake Administration, Beijing, China

2. 2Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China

Abstract

Abstract The 2022 Ms 6.9 Qinghai Menyuan, China, earthquake is the most destructive earthquake to have occurred near the Lenglongling fault at the western segment of the Qilian–Haiyuan fault since 2016 Ms 6.4 Menyuan earthquake. The 2022 earthquake generated surface rupture measuring about 30 km with an unexpected maximum offset larger than 2.6 m in the epicentral area, and severely damaged the local infrastructure and transportation. To analyze the possible causes of the large surface slip and to reveal the rupture process, we modeled the dynamic rupture and strong ground motion of the 2022 Menyuan earthquake using the curved-grid finite-difference method. In the simulation, the geometry of the fault is constructed based on the observed trace of the surface ruptures. The background tectonic stress field is assumed to be uniform, and the slip-weakening law with the constant friction coefficients is adopted. Our modeling results showed that the rupture model with a focal depth of 6 km and a rupture width of 10 km provides a good fit to the observed surface slips and the field records. We also investigated the effects of the focal depth and the rupture size on the surface slips. It is found that under the same conditions, the dynamic rupture models with a larger rupture size generated greater coseismic slips at the surface. However, only the model with a relatively smaller rupture width produced an Mw∼6.7 event similar to the Menyuan earthquake. In contrast, the influence of the focal depth is less significant. The decrease of the focal depth only leads to a slight increase in surface slip. Our results illustrated that a surface-breaking rupture with a relatively narrow width may physically control the general characteristics of the earthquake. This study provides a new insight into the rupture dynamics of the 2022 Menyuan earthquake.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3