Extending the HIRS Data Record with IASI Measurements

Author:

Inamdar Anand K.1ORCID,Shi Lei2ORCID,Lee Hai-Tien3,Jackson Darren L.45ORCID,Matthews Jessica L.2ORCID

Affiliation:

1. Cooperative Institute for Satellite Earth System Studies (CISESS), North Carolina State University, Asheville, NC 28801, USA

2. NOAA’s National Centers for Environmental Information (NCEI), Asheville, NC 28801, USA

3. Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD 20742, USA

4. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA

5. NOAA Physical Sciences Laboratory, Boulder, CO 80305, USA

Abstract

The High-Resolution Infrared Radiation Sounder (HIRS) on the NOAA and the MetOp satellite series have provided global sounding measurements since the late 1970s, spanning over 40 years. These measurements have been useful in climate change detection, numerical weather prediction, and development of long-term climate data records of profiles of atmospheric temperature and humidity, cloud climatology, upper tropospheric water vapor, outgoing longwave radiation, etc. However, the HIRS instrument is being replaced by the new generation of sounders such as the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) on recently launched satellites. In order to continue and extend the HIRS record, we use IASI measurements to simulate and derive HIRS-like data for the 12 HIRS longwave channels. The MetOp satellite operated by EUMETSAT carries both the HIRS and the hyper-spectral IASI instrument with accurate spectral and radiometric calibration, providing a great opportunity to consistently calibrate the measurements. The IASI radiances are convolved with the HIRS spectral response functions to produce IASI-simulated HIRS (IHIRS) for the longwave channels. In the present work, IHIRS data are collocated and compared with HIRS observed radiances on the same satellite to develop a calibration table for each of the ascending/descending orbits and cloudy and clear categories. The resulting inter-instrument calibrated IHIRS data was found to agree with HIRS brightness temperatures within 0.05 K for all longwave channels.

Funder

NOAA through the Cooperative Institute for Satellite Earth System Studies

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3