Eight Years of High Cloud Statistics Using HIRS

Author:

Wylie Donald P.1,Menzel W. Paul2

Affiliation:

1. Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

2. Office of Research and Applications, NOAA/NESDIS, Madison, Wisconsin

Abstract

Abstract Over the last 8 yr frequency and location of cloud observations have been compiled using multispectral High Resolution Infrared Radiation Sounder (HIRS) data from the National Oceanic and Atmospheric Administration polar-orbiting satellites; this work is an extension of the 4-yr dataset reported by D. Wylie et al. The CO2 slicing algorithm applied to the HIRS data exhibits a higher sensitivity to semitransparent cirrus clouds than the cloud algorithm used by the International Satellite Cloud Climatology Project; the threshold for cloud detection appears to require visible optical depths (τvis) greater than 0.1. The geographical distributions of clouds in the 8-yr dataset are nearly the same as those reported from 4 yr of data. The detection of upper-tropospheric clouds occurs most often in the intertropical convergence zone and midlatitude storm belts with lower concentrations in subtropical deserts and oceanic subtropical highs. The areas of concentrated cloud cover exhibit latitudinal movement with the seasons as in other cloud datasets. HIRS finds clear sky in 25%, opaque cloud in 32%, and semitransparent cloud in 43% of all its observations. The effective emissivity of the all semitransparent clouds (τvis < 6) ranges from 0.2 to 0.6 with an average value of about 0.5. Time trends are reexamined in detail. A possible cirrus increase in 1991 reported by Wylie and coauthors in 1994 is found to be diminished upon reinspection. The revised 8-yr record has indications of an increase in high clouds in the northern midlatitudes (0.5% yr−1) but little change elsewhere. The seasonal cycle of cloud cover in the Southern Hemisphere becomes very noticeable in 1993.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3