Evaluation of Linear Kernel-Driven BRDF Models over Snow-Free Rugged Terrain

Author:

Zhu Wenzhe12ORCID,You Dongqin1,Wen Jianguang12,Tang Yong1,Gong Baochang1,Han Yuan12

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Semi-empirical kernel-driven models have been widely used to characterize anisotropic reflectance due to their simple form and physically meaningful approximation. Recently, several kernel-driven models have been coupled with topographic effects to improve the fitting of bidirectional reflectance over rugged terrains. However, extensive evaluations of the various models’ performances are required before their subsequent application in remote sensing. Three typical kernel-driven BRDF models over snow-free rugged terrains such as the RTLSR, TCKD, and the KDST-adjusted TCKD (KDST-TCKD) were investigated in this paper using simulated and observed BRFs. Against simulated data, the fitting error (NIR/Red RMSE) of the RTLSR gradually increases from 0.0358/0.0342 to 0.0471/0.0516 with mean slopes (α) increases from 9.13° to 33.40°. However, the TCKD and KDST-TCKD models perform an overall better fitting accuracy: the fitting errors of TCKD gradually decreased from 0.0366/0.0337 to 0.0252/0.0292, and the best fit from the KDST-TCDK model with NIR/Red RMSE decreased from 0.0192/0.0269 to 0.0169/0.0180. When compared to the sandbox data (α from 8.4° to 30.36°), the NIR/Red RMSE of the RTLSR model ranges from 0.0147/0.0085 to 0.0346/0.0165, for the TCKD model from 0.0144/0.0086 to 0.0298/0.0154, and for the KDST-TCKD model from 0.0137/0.0082 to 0.0234/0.0149. Using MODIS data, the TCKD and KDST-TCKD models show more significant improvements compared to the RTLSR model in rugged terrains. Their RMSE differences are within 0.003 over a relatively flat terrain (α < 10°). When α is large (20°–30° and >30°), the RMSE of the TCKD model has a decrease of around 0.01 compared to that of the RTLSR; for KDST-TCKD, it is approximately 0.02, and can even reach 0.0334 in the savannas. Therefore, the TCKD and KDST-TCKD models have an overall better performance than the RTLSR model in rugged terrains, especially in the case of large mean slopes. Among them, the KDST-TCKD model performs the best due to its consideration of topographic effects, geotropic growth, and component spectra.

Funder

Chinese Natural Science Foundation Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Roujean, J., Leroy, M., Deschamps, P., and Podaire, A. (1990, January 20–24). A surface bidirectional reflectance model to be used for the correction of directional effects in remote sensing multitemporal data sets. Proceedings of the 10th Annual International Symposium on Geoscience and Remote Sensing, College Park, MD, USA.

2. First operational BRDF, albedo nadir reflectance products from MODIS;Schaaf;Remote Sens. Environ.,2002

3. Forward a Small-Timescale BRDF/Albedo by Multisensor Combined BRDF Inversion Model;Wen;IEEE Trans. Geosci. Remote Sens.,2017

4. Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain;Yan;Remote Sens. Environ.,2016

5. Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo From MODIS Data;Qu;IEEE Trans. Geosci. Remote Sens.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3