Urban Tree Canopy Mapping Based on Double-Branch Convolutional Neural Network and Multi-Temporal High Spatial Resolution Satellite Imagery

Author:

Chen Shuaiqiang123ORCID,Chen Meng123,Zhao Bingyu123,Mao Ting2,Wu Jianjun123,Bao Wenxuan123ORCID

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China

2. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3. Beijing Key Laboratory for Remote Sensing of Environmental and Digital Cities, Beijing Normal University, Beijing 100875, China

Abstract

Accurate knowledge of urban forest patterns contributes to well-managed urbanization, but accurate urban tree canopy mapping is still a challenging task because of the complexity of the urban structure. In this paper, a new method that combines double-branch U-NET with multi-temporal satellite images containing phenological information is introduced to accurately map urban tree canopies. Based on the constructed GF-2 image dataset, we developed a double-branch U-NET based on the feature fusion strategy using multi-temporal images to obtain an accuracy improvement with an IOU (intersection over union) of 2.3% and an F1-Score of 1.3% at the pixel level compared to the U-NET using mono-temporal images which performs best in existing studies for urban tree canopy mapping. We also found that the double-branch U-NET based on the feature fusion strategy has better accuracy than the early fusion strategy and decision fusion strategy in processing multi-temporal images for urban tree canopy mapping. We compared the impact of image combinations of different seasons on the urban tree canopy mapping task and found that the combination of summer and autumn images had the highest accuracy in the study area. Our research not only provides a high-precision urban tree canopy mapping method but also provides a direction to improve the accuracy both from the model structure and data potential when using deep learning for urban tree canopy mapping.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3