Mapping Population Distribution with High Spatiotemporal Resolution in Beijing Using Baidu Heat Map Data

Author:

Bao WenxuanORCID,Gong Adu,Zhang TongORCID,Zhao Yiran,Li Boyi,Chen ShuaiqiangORCID

Abstract

Population distribution data with high spatiotemporal resolution are of significant value and fundamental to many application areas, such as public health, urban planning, environmental change, and disaster management. However, such data are still not widely available due to the limited knowledge of complex human activity patterns. The emergence of location-based service big data provides additional opportunities to solve this problem. In this study, we integrated ambient population data, nighttime light data, and building volume data; innovatively proposed a spatial downscaling framework for Baidu heat map data during work time and sleep time; and mapped the population distribution with high spatiotemporal resolution (i.e., hourly, 100 m) in Beijing. Finally, we validated the generated population distribution maps with high spatiotemporal resolution using the highest-quality validation data (i.e., mobile signaling data). The relevant results indicate that our proposed spatial downscaling framework for both work time and sleep time has high accuracy, that the distribution of the population in Beijing on a regular weekday shows “centripetal centralization at daytime, centrifugal dispersion at night” spatiotemporal variation characteristics, that the interaction between the purpose of residents’ activities and the spatial functional differences leads to the spatiotemporal evolution of the population distribution, and that China’s “surgical control and dynamic zero COVID-19” epidemic policy was strongly implemented. In addition, our proposed spatial downscaling framework can be transferred to other regions, which is of value for governmental emergency measures and for studies about human risks to environmental issues.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3