A Joint Transcriptomic and Metabolomic Analysis Reveals the Regulation of Shading on Lignin Biosynthesis in Asparagus

Author:

Ma Junying,Li Xiaoyan,He Maolin,Li Yanwen,Lu Wei,Li MengyaoORCID,Sun BoORCID,Zheng Yangxia

Abstract

Asparagus belongs to the Liliaceae family and has important economic and pharmacological value. Lignin plays a crucial role in cell wall structural integrity, stem strength, water transport, mechanical support and plant resistance to pathogens. In this study, various biological methods were used to study the mechanism of shading on the asparagus lignin accumulation pathway. The physiological results showed that shading significantly reduced stem diameter and cell wall lignin content. Microstructure observation showed that shading reduced the number of vascular bundles and xylem area, resulting in decreased lignin content, and thus reducing the lignification of asparagus. Cinnamic acid, caffeic acid, ferulic acid and sinapyl alcohol are crucial intermediate metabolites in the process of lignin synthesis. Metabolomic profiling showed that shading significantly reduced the contents of cinnamic acid, caffeic acid, ferulic acid and sinapyl alcohol. Transcriptome profiling identified 37 differentially expressed genes related to lignin, including PAL, C4H, 4CL, CAD, CCR, POD, CCoAOMT, and F5H related enzyme activity regulation genes. The expression levels of POD, CCoAOMT, and CCR genes were significantly decreased under shading treatment, while the expression levels of CAD and F5H genes exhibited no significant difference with increased shading. The downregulation of POD, CCoAOMT genes and the decrease in CCR gene expression levels inhibited the activities of the corresponding enzymes under shading treatment, resulting in decreased downstream content of caffeic acid, ferulic acid, sinaperol, chlorogenic acid and coniferin. A significant decrease in upstream cinnamic acid content was observed with shading, which also led to decreased downstream metabolites and reduced asparagus lignin content. In this study, transcriptomic and metabolomic analysis revealed the key regulatory genes and metabolites of asparagus lignin under shading treatment. This study provides a reference for further understanding the mechanism of lignin biosynthesis and the interaction of related genes.

Funder

Science and Technology Plan Project of Sichuan Province

Shaanxi Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3