Bacteriobiota of the Cave Church of Sts. Peter and Paul in Serbia—Culturable and Non-Culturable Communities’ Assessment in the Bioconservation Potential of a Peculiar Fresco Painting

Author:

Dimkić IvicaORCID,Ćopić Milica,Petrović Marija,Stupar MilošORCID,Savković ŽeljkoORCID,Knežević Aleksandar,Subakov Simić Gordana,Ljaljević Grbić Milica,Unković NikolaORCID

Abstract

The principal aim of this study was to determine bacterial diversity within the Cave Church of Sts. Peter and Paul, via culturable and non-culturable approaches, and elucidate the antifungal potential of autochthonous antagonistic bacterial isolates against biodeteriogenic fungi. Furthermore, whole-genome sequencing of selected bacterial antagonists and the analysis of genes included in the synthesis of secondary metabolites were performed. With the highest RA values, determined in metabarcoding analysis, phyla Actinobacteriota (12.08–54.00%) and Proteobacteria (25.34–44.97%) dominated most of the samples. A total of 44 different species, out of 96 obtained isolates, were determined as part of the culturable bacteriobiota, with the predominance of species from the genus Bacillus. Bacillus simplex was the only isolated species simultaneously present in all investigated substrata within the church. The best antagonistic activity against 10 biodeteriogenic fungi was documented for Streptomyces anulatus, followed by Bacillus altitudinis, Chryseobacterium viscerum, and Streptomyces sp. with their highest PGI% values ranging of from 55.9% to 80.9%. These promising results indicate that characterized bacteria are excellent candidates for developing biocontrol strategies for suppressing deteriogenic fungi responsible for the deterioration of investigated fresco painting. Finally, isolate 11-11MM, characterized as Streptomyces sp., represents a new species for science prompting the need for further study.

Funder

Science Fund of the Republic of Serbia, PROMIS program

Ministry of Education, Science and Technological developments of the Republic of Serbia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference107 articles.

1. Bosnić, D. (2020). Amazing Serbia, Mladinska knjiga. [1st ed.].

2. Rakocija, M. (2013). Manastiri i Crkve Južne i Istočne Srbije.

3. Microbial deterioration of cultural heritage and works of art—Tilting at windmills?;Sterflinger;Appl. Microbiol. Biotechnol.,2013

4. The use of-omics tools for assessing biodeterioration of cultural heritage: A review;Beata;J. Cult. Herit,2020

5. Microbial degradation of paintings;Ciferri;Appl. Environ. Microbiol.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3