Life on the wall: the diversity and activity of microbes on 13th – century AD. Lan Na mural painting

Author:

Sansupa Chakriya,Suphaphimol Nattaphon,Nonthijun Paradha,Ronsuek Teewararat,Yimklan Saranphong,Semakul Natthawat,Khrueraya Thapakorn,Suwannarach Nakarin,Purahong Witoon,Disayathanoowat Terd

Abstract

Diverse microorganisms from the three domains of life (Archaea, Bacteria, and Eukaryota) cause deterioration in mural paintings worldwide; however, few studies have simultaneously targeted these three domains. This study aims to survey the microbiome and its potential for biodeterioration on unpreserved Lan Na mural paintings in Sean Khan temple, Chiang Mai, Thailand. The overview of the archaeal, bacterial, and fungal communities was reported by Illumina sequencing, whereas the potential for deterioration was revealed by culturable techniques and a literature search. The abundant microbes reported in this study were also found in other ancient mural paintings worldwide. Halococcus, a salt-tolerant archaeon, as well as the eubacterial genus Crossiella dominated the prokaryotic community. On the other hand, the main fungal group was the genus Candida (Ascomycota). However, a low number of fungi and bacteria were isolated. Most of the isolates showed the ability to survive in the drought conditions of mural paintings but could not perform discoloration activities. The deterioration activity mainly affected calcium compounds, which are the main components of painting substrates. Aspergillus and several bacterial isolates could dissolve calcium compounds, but only Trichaptum species could induce crystal formation. These results suggest that deterioration of painting substrate should be taken into consideration in addition to deterioration of color in mural paintings. For the Lan Na painting in Sean Khan temple, the plaster is the prime target for biodeterioration, and thus we suggest that the preservation effort should focus on this component of the mural painting.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference79 articles.

1. UNITE QIIME release for Fungi;Abarenkov;UNITE Comm.,2021

2. Stone Decay and Conservation: Atmospheric Pollution, Cleaning, Consolidation and Protection;Amoroso,1983

3. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2;Bolyen;Nat. Biotechnol.,2019

4. DADA2: high-resolution sample inference from Illumina amplicon data;Callahan;Nat. Methods,2016

5. Characterization of biodegradation in a 17th century easel painting and potential for a biological approach;Caselli;PLoS One,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3