Populus simonii Carr. Reduces Wind Erosion and Improves Soil Properties in Northern China

Author:

Zhang Jieming,Jia Guodong,Liu Ziqiang,Wang Dandan,Yu Xinxiao

Abstract

To assess the ecological effects of poplar stands with different densities and ages, fixed observation sites were established in selected standard forest plots. Daily dynamics of wind speed and sand transport rate were monitored over an erosive period (March to June) in 2017. Soil characteristics were also measured at these plots. Average daily wind speed and average daily wind erosion modulus decreased significantly after the establishment of poplar trees on sandy land, while soil density decreased significantly, soil hardness increased greatly, and soil organic carbon, total N, and available P levels increased significantly. With increasing stand density, average daily wind speed and daily sediment transport firstly decreased and then increased, while the investigated soil nutrients showed the opposite trend. A tree density of 1320–1368 trees·hm−2 significantly reduced surface wind erosion. With the increase in forest age, the average daily wind speed and daily sediment transport declined, while soil physical and chemical properties were gradually improved. At a stand age of 40 years, wind-caused soil erosion significantly reduced. Taking these effects into consideration, the design and management of protective forest systems in arid and semi-arid areas can be greatly improved.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3