Fouling of Polymeric Hollow Fiber Heat Exchangers by Air Dust

Author:

Astrouski Ilya,Raudensky MiroslavORCID,Kudelova TerezaORCID,Kroulikova TerezaORCID

Abstract

Currently, liquid-to-gas heat exchangers in buildings, domestic appliances and the automotive industry are mainly made of copper and aluminum. Using plastic instead of metal can be very beneficial from an economic and environmental point of view. However, it is required that a successful plastic design meets all the requirements of metal heat exchangers. The polymeric hollow fiber heat exchanger studied in this work is completive to common metal finned heat exchangers. Due to its unique design (the use of thousands of thin-walled microtubes connected in parallel), it achieves a high level of compactness and thermal performance, low pressure drops and high operation pressure. This paper focuses on an important aspect of heat exchanger operation—its fouling in conditions relevant to building and domestic application. In heating, ventilation and air conditioning (HVAC) and automotive and domestic appliances, outdoor and domestic dust are the main source of fouling. In this study, a heat exchanger made of polymeric hollow fibers was tested in conditions typical for indoor HVAC equipment, namely with the 20 °C room air flowing through the hot water coil (water inlet 50 °C) with air velocity of 1.5 m/s. ASHRAE test dust was used as a foulant to model domestic dust. A polymeric heat exchanger with fibers with an outer diameter of 0.6 mm (1960 fibers arranged into 14 layers in total) and a heat transfer area of 0.89 m2 was tested. It was proven that the smooth polypropylene surface of hollow fibers has a favorable antifouling characteristic. Fouling evolution on the metallic heat transfer surfaces of a similar surface density was about twice as quick as on the plastic one. The experimental results on the plastic heat exchanger showed a 38% decrease in the heat transfer rate and a 91% increase in pressure drops after eighteen days of the experiment when a total of 4000 g/m2 of the test dust had been injected into the air duct. The decrease in the heat transfer rate of the heat exchanger was influenced mainly by clogging in the frontal area because the first layers were fouled significantly more than the deeper layers.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crossflow polymeric hollow fiber heat exchanger: fiber tension effects on heat transfer and airside pressure drop;Journal of Thermal Analysis and Calorimetry;2024-03-01

2. Polymeric hollow fiber heat transfer surface for heat exchanger;Applied Thermal Engineering;2023-10

3. POLYMERIC HOLLOW FIBERS SERVING AS A CROSS-FLOWHEAT EXCHANGER IN LIQUID-TO-GAS APPLICATIONS;Proceeding of 8th Thermal and Fluids Engineering Conference (TFEC);2023

4. Cooling of flue gas by cascade of polymeric hollow fiber heat exchangers;Case Studies in Thermal Engineering;2022-08

5. Limits and Use of Polymeric Hollow Fibers as Material for Heat Transfer Surfaces;2022 International Congress on Advanced Materials Sciences and Engineering (AMSE);2022-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3