Real-Time Structural Monitoring of the Multi-Point Hoisting of a Long-Span Converter Station Steel Structure

Author:

Zhu Yunfeng,Gao Yi,Zeng Qinghe,Liao Jin,Liu ZhenORCID,Zhou Cuiying

Abstract

In the process of using a long-span converter station steel structure, engineering disasters can easily occur. Structural monitoring is an important method to reduce hoisting risk. In previous engineering cases, the structural monitoring of long-span converter station steel structure hoisting is rare. Thus, no relevant hoisting experience can be referenced. Traditional monitoring methods have a small scope of application, making it difficult to coordinate monitoring and construction control. In the monitoring process, many problems arise, such as complicated installation processes, large-scale data processing, and large-scale installation errors. With a real-time structural monitoring system, the mechanical changes in the long-span converter station steel structure during the hoisting process can be monitored in real-time in order to achieve real-time warning of engineering disasters, timely identification of engineering issues, and allow for rapid decision-making, thus avoiding the occurrence of engineering disasters. Based on this concept, automatic monitoring and manual measurement of the mechanical changes in the longest long-span converter station steel structure in the world is carried out, and the monitoring results were compared with the corresponding numerical simulation results in order to develop a real-time structural monitoring system for the whole long-span converter station steel structure’s multi-point lifting process. This approach collects the monitoring data and outputs the deflection, stress, strain, wind force, and temperature of the long-span converter station steel structure in real-time, enabling real-time monitoring to ensure the safety of the lifting process. This research offers a new method and basis for the structural monitoring of the multi-point hoisting of a long-span converter station steel structure.

Funder

the National Key Research and Development Project

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3