An Intelligent Correlation Real-Time Analysis Method for the Mechanical Properties of Members in Super-Span Valve Hall Grid Structure Hoisting Process

Author:

Zeng Qinghe,Liao Jin,Huang Xionghui,Ming Weihua,Gao Yi,Zhou Cuiying,Liu ZhenORCID

Abstract

The mechanical performance analysis of the members is the primary basis for evaluating the hoisting quality and safety of the valve hall grid structure. Ordinarily, manual analysis of monitoring data and on-site experience inspection are employed to structural judgment, but it is challenging to evaluate the correlation of the various members and the overall safety of a valve hall. In this paper, an intelligent correlation real-time analysis method based on a BPNN (Back Propagation Neural Network) for the mechanical properties of members is proposed to intelligently control the safety of valve hall grid structure hoisting. The correlation between the mechanical properties of multi-points in the grid structure is used to model the target measuring points. In addition, an intelligent real-time analysis system is used to manage and apply the mechanical property correlation and abnormality of members in real-time. Then, the model is applied to a super-span valve hall in South China, and the application effect is good. The mechanical property correlation model can accurately reflect the mechanical state of the valve hall grid structure hoisting process. Simultaneously, it can effectively pinpoint hidden dangers and locate risk members. It provides a new reference for the normal operation and maintenance of a super-span valve hall grid.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3