Intrinsic Characteristics of Forward Simulation Modeling Electric Vehicle for Energy Analysis

Author:

Montaleza Christian,Arévalo PaulORCID,Tostado-Véliz MarcosORCID,Jurado FranciscoORCID

Abstract

The forward method for modeling electric vehicles is one of the most suitable for estimating energy consumption in different imposed driving cycles. However, a detailed description of the methodology used for the development of electric vehicle models is necessary and is scarce in the current literature. To fill this gap, this study focuses on highlighting the intrinsic characteristics through a theoretical study with a mathematical model, complemented by demonstrative simulations in Matlab/Simulink. The results show that the forward method can be estimated more accurately based on the energy consumption of the electric vehicle. Moreover, this paper aims to be explicitly descriptive for the development of more complex electric vehicle models to incorporate real driving cycles, being able to size the drivetrain of the vehicle itself or develop ecological routes.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integration of renewable energies and electric vehicles in interconnected energy systems;Sustainable Energy Planning in Smart Grids;2024

2. Recent Advances toward Carbon-Neutral Power System;Electricity;2023-08-04

3. Drive Cycle based Analysis and Control of Five Phase Induction Motor Drive for Electric Vehicle;2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET);2023-05-19

4. Modeling and Dynamic Simulation of an Electric Vehicle;2023 1st International Conference on Renewable Solutions for Ecosystems: Towards a Sustainable Energy Transition (ICRSEtoSET);2023-05-06

5. Modeling and Experimental Validation of Tram Power Consumption;2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC);2023-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3