Abstract
Eco-friendly river restoration structures are used to create localized scour pools which serve as fish nurseries and promote biodiversity. In this category, chevrons are relatively new structures designed to maintain navigability in rivers. The scour hole formed in the wake region of chevrons can either act as a disposal site for dredged material or as a resting spot for different fish species. However, only few studies are present in the literature dealing with the scour mechanism due to chevrons. Therefore, this work aims to analyze the scour features at equilibrium, under different hydraulic conditions and transversal locations in a straight channel. Tests were conducted with both isolated and multiple chevrons in series arrangement. Scour morphology types were classified and their fields of existence were established as well. A detailed dimensional analysis was conducted, allowing us to identify the main parameters governing the scour phenomenon and derive a novel equivalent densimetric Froude number. Finally, empirical equations were developed to predict the maximum scour depth and length as well as the maximum dune height.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献