Author:
Liao Hao-Yu,Pan Tsung-Yi,Chang Hsiang-Kuan,Hsieh Chi-Tai,Lai Jihn-Sung,Tan Yih-Chi,Su Ming-Daw
Abstract
Pluvial floods are the most frequent natural hazard impacting urban cities because of extreme rainfall intensity within short duration. Owing to the complex interaction between rainfall, drainage systems and overland flow, pluvial flood warning poses a challenge for many metropolises. Although physical-based flood inundation models could identify inundated locations, hydrodynamic modeling is limited in terms of computational costs and sophisticated calibration. Thus, herein, a quick pluvial flood warning system using rainfall thresholds for central Taipei is developed. A tabu search algorithm is implemented with hydrological-analysis-based initial boundary conditions to optimize rainfall thresholds. Furthermore, a cross test is adopted to evaluate the effect of each rainfall event on rainfall threshold optimization. Urban sewer flood is simulated via hydrodynamic modeling with calibration using crowdsourced data. The locations and time of occurrence of pluvial floods can be obtained to increase the quality of observed data that dominate the accuracy of pluvial flood warning when using rainfall thresholds. The optimization process is a tabu search based on flood reports and observed data for six flood-prone districts in central Taipei. The results show that optimum rainfall thresholds can be efficiently determined through tabu search and the accuracy of the issued flood warnings can be significantly improved.
Funder
Ministry of Science and Technology, Taiwan
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献