Abstract
This paper proposes a series of methods to increase the efficiency of the operating of a sewer network that serves a medium-sized city with a population of 250,000 inhabitants. The sewer network serves five areas of the city and consists of seven tanks that communicate with one another and with the treatment plant through pipes. The controls are applied to the process by valves and pumps. The main objective of this paper is to determine the optimal controls to minimize two performance criteria: volume of overflow, and overflow quality index. The sewer network was modeled in the BSMSewer environment. The optimization of the operating of the sewer network was carried out in the conditions of an influent computed in relation to the number of inhabitants and to the area served, using genetic algorithms as a method of optimization. Five optimization strategies were analyzed by numerical simulation. The analysis of the five strategies was done by comparison of their results with one another, as well as in relation to the case where all of the controls were set at maximum values of 100%. The simulations showed that the third strategy produced the best results in relation to each of the two criteria.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献