Optimal Control Strategy of a Sewer Network

Author:

Vasiliev Iulian,Luca Laurentiu,Barbu MarianORCID,Vilanova RamonORCID,Caraman Sergiu

Abstract

This paper proposes a series of methods to increase the efficiency of the operating of a sewer network that serves a medium-sized city with a population of 250,000 inhabitants. The sewer network serves five areas of the city and consists of seven tanks that communicate with one another and with the treatment plant through pipes. The controls are applied to the process by valves and pumps. The main objective of this paper is to determine the optimal controls to minimize two performance criteria: volume of overflow, and overflow quality index. The sewer network was modeled in the BSMSewer environment. The optimization of the operating of the sewer network was carried out in the conditions of an influent computed in relation to the number of inhabitants and to the area served, using genetic algorithms as a method of optimization. Five optimization strategies were analyzed by numerical simulation. The analysis of the five strategies was done by comparison of their results with one another, as well as in relation to the case where all of the controls were set at maximum values of 100%. The simulations showed that the third strategy produced the best results in relation to each of the two criteria.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference32 articles.

1. A non-linear optimal control approach to central sewer network flow control

2. Modelling, Simulation and Control of Urban Wastewater Systems;Schütze,2002

3. Model Predictive Control of Wastewater Systems;Ocampo-Martinez,2010

4. A Sewer Dynamic Model for Simulating Reaction Rates of Different Compounds in Urban Sewer Pipe

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3