NF-κB and TNF Affect the Astrocytic Differentiation from Neural Stem Cells

Author:

Birck Cindy,Ginolhac Aurélien,Pavlou Maria Angeliki S.,Michelucci AlessandroORCID,Heuschling Paul,Grandbarbe LucORCID

Abstract

The NF-κB signaling pathway is crucial during development and inflammatory processes. We have previously shown that NF-κB activation induces dedifferentiation of astrocytes into neural progenitor cells (NPCs). Here, we provide evidence  that the NF-κB pathway plays also a fundamental role during the differentiation of NPCs into astrocytes. First, we show that the NF-κB pathway is essential to initiate astrocytic differentiation as its early inhibition induces NPC apoptosis and impedes their differentiation. Second, we demonstrate that persistent NF-κB activation affects NPC-derived astrocyte differentiation. Tumor necrosis factor (TNF)-treated NPCs show NF-κB activation, maintain their multipotential and proliferation properties, display persistent expression of immature markers and inhibit astrocyte markers. Third, we analyze the effect of  NF-κB activation on the main known astrocytic differentiation pathways, such as NOTCH and JAK-STAT. Our findings suggest that the NF-κB pathway plays a dual fundamental role during NPC differentiation into astrocytes: it promotes astrocyte specification, but its persistent activation impedes their differentiation.

Publisher

MDPI AG

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3