The Effect of Abiotic Factors on Abundance and Photosynthetic Performance of Airborne Cyanobacteria and Microalgae Isolated from the Southern Baltic Sea Region

Author:

Wiśniewska KingaORCID,Śliwińska-Wilczewska SylwiaORCID,Lewandowska AnitaORCID,Konik MartaORCID

Abstract

Cyanobacteria and microalgae present in the aquatic or terrestrial environment may be emitted into the air and transported along with air masses over long distances. As a result of staying in the atmosphere, these organisms may develop a greater tolerance to stressful factors, but this topic is still relatively unknown. The main aim was to show an autecological characteristic of some airborne microalgae and cyanobacteria strains by a factorial laboratory experiment approach, including changes in irradiance, temperature, and salinity conditions. The additional purpose of this work was also to present part of the Culture Collection of Baltic Algae (CCBA) collection, which consists of airborne algae (AA) isolated from the atmospheric air of the southern Baltic Sea region. Altogether, 61 strains of airborne cyanobacteria and microalgae from the southern Baltic Sea region were isolated from May 2018 to August 2020. Selected microorganisms were tested in controlled laboratory conditions to identify their response to different irradiance (10–190 µmol photons m−2 s−1), temperature (13–23 °C), and salinity conditions (0–36 PSU). The highest numbers of cells (above 30 × 105 cell mL−1) were recorded for cyanobacterium Nostoc sp., and for diatoms Nitzschia sp., Amphora sp., and Halamphora sp. We found that for cyanobacterium Nostoc sp. as well as for green alga Coccomyxa sp. the maximum cell concentrations were recorded at the salinity of 0 PSU. Moreover, cyanobacteria Planktolyngbya contorta, Pseudanabaena catenata, Leptolyngbya foveolarum, Gloeocapsa sp., and Rivularia sp. were able to grow only at a salinity of 0 PSU. On the other hand, in the range of 16–24 PSU, the highest cell numbers of examined diatoms have been identified. Our research provided that deposited airborne microalgae and cyanobacteria showed full colonization potential. The present experiment suggests that the adaptive abilities of microorganisms, in particular those producing toxins, may contribute to the spread in the future. Thus, it may increase human exposure to their negative health effects. Any distinctive adaptations of the genera give them an additional competitive advantage and a greater chance for territorial expansion.

Publisher

MDPI AG

Subject

General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3