Abstract
Spermatogonia are stem and progenitor cells responsible for maintaining mammalian spermatogenesis. Preserving the balance between self-renewal of spermatogonial stem cells (SSCs) and differentiation is critical for spermatogenesis and fertility. Ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) is highly expressed in spermatogonia of many species; however, its functional role has not been identified. Here, we aimed to understand the role of UCH-L1 in murine spermatogonia using a Uch-l1−/− mouse model. We confirmed that UCH-L1 is expressed in undifferentiated and early-differentiating spermatogonia in the post-natal mammalian testis. The Uch-l1−/− mice showed reduced testis weight and progressive degeneration of seminiferous tubules. Single-cell transcriptome analysis detected a dysregulated metabolic profile in spermatogonia of Uch-l1−/− compared to wild-type mice. Furthermore, cultured Uch-l1−/− SSCs had decreased capacity in regenerating full spermatogenesis after transplantation in vivo and accelerated oxidative phosphorylation (OXPHOS) during maintenance in vitro. Together, these results indicate that the absence of UCH-L1 impacts the maintenance of SSC homeostasis and metabolism and impacts the differentiation competence. Metabolic perturbations associated with loss of UCH-L1 appear to underlie a reduced capacity for supporting spermatogenesis and fertility with age. This work is one step further in understanding the complex regulatory circuits underlying SSC function.
Funder
National Institutes of Health
Natural Sciences and Engineering Research Council of Canada
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献