Abstract
In the present study, surface treatment techniques such as room temperature machining (RTM) and low temperature burnishing (LTB) processing have been used to improve the microstructure of GH738 superalloy. Nano-grains and nano-twins are obtained on the top surface of RTM and LTB specimens. It is found that although the grain size of RTM and LTB specimens is almost the same, different types of nano-twins have been produced. Moreover, the effect of RTM and LTB processing on high temperature oxidation behavior of nickel-based superalloy GH738 at 700 °C is investigated. The result shows that LTB specimen has the best high temperature oxidation resistance owing to the formation of nano-grains and higher twins density, which induce to form a continuous protective Al2O3 layer at the interface between outer oxide layer and matrix. It is observed that this layer inhibits the inward diffusion of O and outward diffusion of Ti and significantly improves oxidation resistance of LTB specimen. Furthermore, the effects of nano-grains and crystal defects on the diffusion mechanism of elements are clarified during the high temperature oxidation test.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献