The Effect of Milling Cooling Conditions on the Surface Integrity and Fatigue Behavior of the GH4169 Superalloy

Author:

Xu RufengORCID,Zhou Yongxin,Li Xun,Yang Shenliang,Han Kangning,Wang Shijun

Abstract

The GH4169 superalloy has high strength at high temperatures. Cooling conditions have a major impact on the machined surface integrity, which further affects the fatigue properties of specimens of the GH4169 superalloy. The influence of cooling conditions on the surface integrity of the GH4169 superalloy is first studied during the side milling. Then, the effect of surface integrity under different cooling conditions on the fatigue behavior of specimens of the GH4169 superalloy is investigated by a standard tensile and tensile–mode fatigue testing. The results obtained show that surface roughness and the depth of the plastic deformation layer in wet milling and dry milling makes little difference, the surface microhardness rate in dry milling is slightly lower than that in wet milling, the surface tensile residual stress in dry milling is significantly higher than that in wet milling, and the fatigue behavior in dry milling is only about 50% of that in wet milling. In addition, the crack initiation of specimens of the GH4169 superalloy utilizing wet milling is on the subsurface, while that from dry milling is on the surface. Thus, cooling conditions have an important impact on the fatigue behavior of specimens of the GH4169 superalloy, and micro defects in dry milling are the main factors of decreasing of fatigue behavior of specimens of the GH4169 superalloy.

Funder

National Major Science and Technology Projects of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3